Raspi Python Development Face Recognition
Raspi 4 mit 4GB Ram, RDP, Python tests mit Matplotlib, OpenCV, Face recognition
MatplotLib
from scipy import interpolate
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0, 15)
y = np.exp(x/3.0)
f = interpolate.interp1d(x, y)
xnew = np.arange(0, 14, 0.1)
ynew = f(xnew)
plt.plot(x, y, 'o', xnew, ynew, '-')
plt.show()
OpenCV
# opencv
# working on Raspi 4 / 2020-05-04
import numpy as np
import cv2
print ("cv2 Version:", cv2.__version__)
cap = cv2.VideoCapture(0)
count = 10000
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Display the resulting frame
cv2.imshow('frame', gray)
if cv2.waitKey(1) & 0xFF == ord('s'):
count += 1
filename = "frame"+ str(count) + ".png"
print ("save" , filename)
cv2.imwrite(filename, frame)
filename = "frame"+ str(count) + "_sw.png"
cv2.imwrite(filename, gray)
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
Face recognition
https://github.com/ageitgey/face_recognition
pip3 install face_recognition
import face_recognition
import cv2
# This is a demo of blurring faces in video.
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Initialize some variables
face_locations = []
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face detection processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(small_frame, model="cnn")
# Display the results
for top, right, bottom, left in face_locations:
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Extract the region of the image that contains the face
face_image = frame[top:bottom, left:right]
# Blur the face image
face_image = cv2.GaussianBlur(face_image, (99, 99), 30)
# Put the blurred face region back into the frame image
frame[top:bottom, left:right] = face_image
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()
Written on September 4, 2020