less than 1 minute read

General Data Protection Regulation (GDPR) Datenschutz-Grundverordnung (DSGVO)

RAG - Collection

Sammlung

Fully local RAG agents with Llama 3.1

https://www.youtube.com/watch?v=nPpgh_KaNng

https://github.com/langchain-ai/langgraph/blob/main/docs/docs/tutorials/sql-agent.ipynb

https://github.com/langchain-ai/langgraph/blob/main/docs/docs/tutorials/introduction.ipynb

LLama on Hugginface

https://colab.research.google.com/github/deepset-ai/haystack-cookbook/blob/main/notebooks/llama3_rag.ipynb#scrollTo=5ggXrtFs18rs

working

Building RAG With Llama 3.1

https://www.youtube.com/watch?v=6R15vq0GRGg

https://github.com/mosh98/RAG_With_Models/blob/main/Simple%20RAG/Llama3_1_Lanchain_Ollama_RAG%20Demo.ipynb

RAG Chatbot using Llama3

![[_asset/2024-07-11-rag-1731241243458.jpeg]]

https://huggingface.co/blog/not-lain/rag-chatbot-using-llama3

Huggingface Accepted

https://huggingface.co/settings/gated-repos

Run Llama 3.1 locally using LangChain

https://www.youtube.com/watch?v=6ExFTPcJJFs

L-7 RAG (Retrieval Augmented Generation)

https://www.youtube.com/watch?v=iA-UhFlIP80

https://github.com/AarohiSingla/Generative_AI/tree/main/L-7/RAG_demo

Understanding Embeddings in RAG and How to use them - Llama-Index

https://www.youtube.com/watch?v=v6g8eo86T8A

Massive Text Embedding Benchmark

Massive Text Embedding Benchmark

https://huggingface.co/spaces/mteb/leaderboard

Finetune Llama 3.2, Mistral, Phi-3.5 & Gemma 2-5x faster with 80% less memory!

https://github.com/unslothai/unsloth https://github.com/unslothai/unsloth?tab=readme-ov-file#-installation-instructions

Talk to Your Documents, Powered by Llama-Index

https://www.youtube.com/watch?v=WL7V9JUy2sE

https://github.com/run-llama/llama_index

Quick and Dirty: Building a Private RAG Conversational Agent with LM Studio, Chroma DB, and LangChain

https://medium.com/@mr.ghulamrasool/quick-and-dirty-building-a-private-conversational-agent-for-healthcare-a-journey-with-lm-studio-f782a56987bd

https://github.com/grasool/Local-RAG-Chatbot

https://moffitt.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=945c0f41-9c93-43f9-9c0d-b10e015f68f8

Langchain

https://python.langchain.com/docs/tutorials/

FlagEmbedding holds a whole curriculum for retrieval, embedding models, RAG, etc. This section is currently being actively updated, suggestions are very welcome. No matter you are new to NLP or a veteran, we hope you can find something helpful!

https://github.com/FlagOpen/FlagEmbedding/blob/master/Tutorials/quick_start.ipynb

https://github.com/FlagOpen/FlagEmbedding/tree/master/Tutorials