LLM-RAG-Collection-OSS-DSGVO-GDPR
General Data Protection Regulation (GDPR) Datenschutz-Grundverordnung (DSGVO)
RAG - Collection
Sammlung
Fully local RAG agents with Llama 3.1
https://www.youtube.com/watch?v=nPpgh_KaNng
https://github.com/langchain-ai/langgraph/blob/main/docs/docs/tutorials/sql-agent.ipynb
https://github.com/langchain-ai/langgraph/blob/main/docs/docs/tutorials/introduction.ipynb
LLama on Hugginface
https://colab.research.google.com/github/deepset-ai/haystack-cookbook/blob/main/notebooks/llama3_rag.ipynb#scrollTo=5ggXrtFs18rs
working
Building RAG With Llama 3.1
https://www.youtube.com/watch?v=6R15vq0GRGg
RAG Chatbot using Llama3
![[_asset/2024-07-11-rag-1731241243458.jpeg]]
https://huggingface.co/blog/not-lain/rag-chatbot-using-llama3
Huggingface Accepted
https://huggingface.co/settings/gated-repos
Run Llama 3.1 locally using LangChain
https://www.youtube.com/watch?v=6ExFTPcJJFs
L-7 RAG (Retrieval Augmented Generation)
https://www.youtube.com/watch?v=iA-UhFlIP80
https://github.com/AarohiSingla/Generative_AI/tree/main/L-7/RAG_demo
Understanding Embeddings in RAG and How to use them - Llama-Index
https://www.youtube.com/watch?v=v6g8eo86T8A
Massive Text Embedding Benchmark
Massive Text Embedding Benchmark
https://huggingface.co/spaces/mteb/leaderboard
Finetune Llama 3.2, Mistral, Phi-3.5 & Gemma 2-5x faster with 80% less memory!
https://github.com/unslothai/unsloth https://github.com/unslothai/unsloth?tab=readme-ov-file#-installation-instructions
Talk to Your Documents, Powered by Llama-Index
https://www.youtube.com/watch?v=WL7V9JUy2sE
https://github.com/run-llama/llama_index
Quick and Dirty: Building a Private RAG Conversational Agent with LM Studio, Chroma DB, and LangChain
https://github.com/grasool/Local-RAG-Chatbot
https://moffitt.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=945c0f41-9c93-43f9-9c0d-b10e015f68f8
Langchain
https://python.langchain.com/docs/tutorials/
Links
-
Paper Searching for Best Practices in Retrieval-Augmented Generation
-
The Best RAG Stack to Date
https://pub.towardsai.net/the-best-rag-stack-to-date-8dc035075e13
FlagEmbedding Tutorial
FlagEmbedding holds a whole curriculum for retrieval, embedding models, RAG, etc. This section is currently being actively updated, suggestions are very welcome. No matter you are new to NLP or a veteran, we hope you can find something helpful!
https://github.com/FlagOpen/FlagEmbedding/blob/master/Tutorials/quick_start.ipynb
https://github.com/FlagOpen/FlagEmbedding/tree/master/Tutorials